Transformation groups on cohomology product of spheres
نویسندگان
چکیده
منابع مشابه
The Cohomology Rings of the Orbit Spaces of Free Transformation Groups of the Product of Two Spheres
Let G = Zp, p a prime (resp. S1), act freely on a finitistic space X with mod p (resp. rational) cohomology ring isomorphic to that of Sm×Sn. In this paper we determine the possible cohomology algebra of the orbit space X/G.
متن کاملDigital cohomology groups of certain minimal surfaces
In this study, we compute simplicial cohomology groups with different coefficients of a connected sum of certain minimal simple surfaces by using the universal coefficient theorem for cohomology groups. The method used in this paper is a different way to compute digital cohomology groups of minimal simple surfaces. We also prove some theorems related to degree properties of a map on digital sph...
متن کاملFinite Groups Acting Linearly: Hochschild Cohomology and the Cup Product
When a finite group acts linearly on a complex vector space, the natural semi-direct product of the group and the polynomial ring over the space forms a skew group algebra. This algebra plays the role of the coordinate ring of the resulting orbifold and serves as a substitute for the ring of invariant polynomials from the viewpoint of geometry and physics. Its Hochschild cohomology predicts var...
متن کاملOn the Exponent of Triple Tensor Product of p-Groups
The non-abelian tensor product of groups which has its origins in algebraic K-theory as well as inhomotopy theory, was introduced by Brown and Loday in 1987. Group theoretical aspects of non-abelian tensor products have been studied extensively. In particular, some studies focused on the relationship between the exponent of a group and exponent of its tensor square. On the other hand, com...
متن کاملLectures on the Cohomology of Groups
The cohomology theory of groups arose from both topological and algebraic sources. The starting point for the topological aspect of the theory was a 1936 paper by Hurewicz [7], in which he introduced aspherical spaces. These are spaces X such that πn(X) = 0 for n 6= 1. (Hurewicz had introduced higher homotopy groups just one year earlier, and he was now trying to understand the spaces with the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inventiones Mathematicae
سال: 1974
ISSN: 0020-9910,1432-1297
DOI: 10.1007/bf01405204